mirror of
https://github.com/django/django.git
synced 2025-10-25 06:36:07 +00:00
Calling Migration.mutate_state() now also allows to do in_place
mutations in case an intermediate state is thrown away later.
Thanks Anssi Kääriäinen for the idea, Ryan Hall for parts of the patch,
and Claude Paroz and Tim Graham for the review
Backport of 57dc8dd3fa from master
559 lines
23 KiB
Python
559 lines
23 KiB
Python
from __future__ import unicode_literals
|
|
|
|
import copy
|
|
from collections import OrderedDict
|
|
|
|
from django.apps import AppConfig
|
|
from django.apps.registry import Apps, apps as global_apps
|
|
from django.conf import settings
|
|
from django.db import models
|
|
from django.db.models.fields.proxy import OrderWrt
|
|
from django.db.models.fields.related import (
|
|
RECURSIVE_RELATIONSHIP_CONSTANT, do_pending_lookups,
|
|
)
|
|
from django.db.models.options import DEFAULT_NAMES, normalize_together
|
|
from django.utils import six
|
|
from django.utils.encoding import force_text, smart_text
|
|
from django.utils.functional import cached_property
|
|
from django.utils.module_loading import import_string
|
|
from django.utils.version import get_docs_version
|
|
|
|
|
|
class InvalidBasesError(ValueError):
|
|
pass
|
|
|
|
|
|
def _get_app_label_and_model_name(model, app_label=''):
|
|
if isinstance(model, six.string_types):
|
|
split = model.split('.', 1)
|
|
return (tuple(split) if len(split) == 2 else (app_label, split[0]))
|
|
else:
|
|
return model._meta.app_label, model._meta.model_name
|
|
|
|
|
|
def get_related_models_recursive(model):
|
|
"""
|
|
Returns all models that have a direct or indirect relationship
|
|
to the given model.
|
|
|
|
Relationships are either defined by explicit relational fields, like
|
|
ForeignKey, ManyToManyField or OneToOneField, or by inheriting from another
|
|
model (a superclass is related to its subclasses, but not vice versa). Note,
|
|
however, that a model inheriting from a concrete model is also related to
|
|
its superclass through the implicit *_ptr OneToOneField on the subclass.
|
|
"""
|
|
def _related_models(m):
|
|
return [
|
|
f.related_model for f in m._meta.get_fields(include_parents=True, include_hidden=True)
|
|
if f.is_relation and not isinstance(f.related_model, six.string_types)
|
|
] + [
|
|
subclass for subclass in m.__subclasses__()
|
|
if issubclass(subclass, models.Model)
|
|
]
|
|
|
|
seen = set()
|
|
queue = _related_models(model)
|
|
for rel_mod in queue:
|
|
rel_app_label, rel_model_name = rel_mod._meta.app_label, rel_mod._meta.model_name
|
|
if (rel_app_label, rel_model_name) in seen:
|
|
continue
|
|
seen.add((rel_app_label, rel_model_name))
|
|
queue.extend(_related_models(rel_mod))
|
|
return seen - {(model._meta.app_label, model._meta.model_name)}
|
|
|
|
|
|
class ProjectState(object):
|
|
"""
|
|
Represents the entire project's overall state.
|
|
This is the item that is passed around - we do it here rather than at the
|
|
app level so that cross-app FKs/etc. resolve properly.
|
|
"""
|
|
|
|
def __init__(self, models=None, real_apps=None):
|
|
self.models = models or {}
|
|
# Apps to include from main registry, usually unmigrated ones
|
|
self.real_apps = real_apps or []
|
|
|
|
def add_model(self, model_state):
|
|
app_label, model_name = model_state.app_label, model_state.name_lower
|
|
self.models[(app_label, model_name)] = model_state
|
|
if 'apps' in self.__dict__: # hasattr would cache the property
|
|
self.reload_model(app_label, model_name)
|
|
|
|
def remove_model(self, app_label, model_name):
|
|
del self.models[app_label, model_name]
|
|
if 'apps' in self.__dict__: # hasattr would cache the property
|
|
self.apps.unregister_model(app_label, model_name)
|
|
|
|
def reload_model(self, app_label, model_name):
|
|
if 'apps' in self.__dict__: # hasattr would cache the property
|
|
try:
|
|
old_model = self.apps.get_model(app_label, model_name)
|
|
except LookupError:
|
|
related_models = set()
|
|
else:
|
|
# Get all relations to and from the old model before reloading,
|
|
# as _meta.apps may change
|
|
related_models = get_related_models_recursive(old_model)
|
|
|
|
# Get all outgoing references from the model to be rendered
|
|
model_state = self.models[(app_label, model_name)]
|
|
for name, field in model_state.fields:
|
|
if field.is_relation:
|
|
if field.rel.to == RECURSIVE_RELATIONSHIP_CONSTANT:
|
|
continue
|
|
rel_app_label, rel_model_name = _get_app_label_and_model_name(field.rel.to, app_label)
|
|
related_models.add((rel_app_label, rel_model_name.lower()))
|
|
|
|
# Unregister all related models
|
|
for rel_app_label, rel_model_name in related_models:
|
|
self.apps.unregister_model(rel_app_label, rel_model_name)
|
|
|
|
# Unregister the current model
|
|
self.apps.unregister_model(app_label, model_name)
|
|
|
|
# Gather all models states of those models that will be rerendered.
|
|
# This includes:
|
|
# 1. The current model
|
|
try:
|
|
model_state = self.models[app_label, model_name]
|
|
except KeyError:
|
|
states_to_be_rendered = []
|
|
else:
|
|
states_to_be_rendered = [model_state]
|
|
|
|
# 2. All related models of unmigrated apps
|
|
for model_state in self.apps.real_models:
|
|
if (model_state.app_label, model_state.name_lower) in related_models:
|
|
states_to_be_rendered.append(model_state)
|
|
|
|
# 3. All related models of migrated apps
|
|
for rel_app_label, rel_model_name in related_models:
|
|
try:
|
|
model_state = self.models[rel_app_label, rel_model_name]
|
|
except KeyError:
|
|
pass
|
|
else:
|
|
states_to_be_rendered.append(model_state)
|
|
|
|
# Render all models
|
|
self.apps.render_multiple(states_to_be_rendered)
|
|
|
|
def clone(self):
|
|
"Returns an exact copy of this ProjectState"
|
|
new_state = ProjectState(
|
|
models={k: v.clone() for k, v in self.models.items()},
|
|
real_apps=self.real_apps,
|
|
)
|
|
if 'apps' in self.__dict__:
|
|
new_state.apps = self.apps.clone()
|
|
return new_state
|
|
|
|
@cached_property
|
|
def apps(self):
|
|
return StateApps(self.real_apps, self.models)
|
|
|
|
@property
|
|
def concrete_apps(self):
|
|
self.apps = StateApps(self.real_apps, self.models, ignore_swappable=True)
|
|
return self.apps
|
|
|
|
@classmethod
|
|
def from_apps(cls, apps):
|
|
"Takes in an Apps and returns a ProjectState matching it"
|
|
app_models = {}
|
|
for model in apps.get_models(include_swapped=True):
|
|
model_state = ModelState.from_model(model)
|
|
app_models[(model_state.app_label, model_state.name_lower)] = model_state
|
|
return cls(app_models)
|
|
|
|
def __eq__(self, other):
|
|
if set(self.models.keys()) != set(other.models.keys()):
|
|
return False
|
|
if set(self.real_apps) != set(other.real_apps):
|
|
return False
|
|
return all(model == other.models[key] for key, model in self.models.items())
|
|
|
|
def __ne__(self, other):
|
|
return not (self == other)
|
|
|
|
|
|
class AppConfigStub(AppConfig):
|
|
"""
|
|
Stubs a Django AppConfig. Only provides a label, and a dict of models.
|
|
"""
|
|
# Not used, but required by AppConfig.__init__
|
|
path = ''
|
|
|
|
def __init__(self, label):
|
|
self.label = label
|
|
# App-label and app-name are not the same thing, so technically passing
|
|
# in the label here is wrong. In practice, migrations don't care about
|
|
# the app name, but we need something unique, and the label works fine.
|
|
super(AppConfigStub, self).__init__(label, None)
|
|
|
|
def import_models(self, all_models):
|
|
self.models = all_models
|
|
|
|
|
|
class StateApps(Apps):
|
|
"""
|
|
Subclass of the global Apps registry class to better handle dynamic model
|
|
additions and removals.
|
|
"""
|
|
def __init__(self, real_apps, models, ignore_swappable=False):
|
|
# Any apps in self.real_apps should have all their models included
|
|
# in the render. We don't use the original model instances as there
|
|
# are some variables that refer to the Apps object.
|
|
# FKs/M2Ms from real apps are also not included as they just
|
|
# mess things up with partial states (due to lack of dependencies)
|
|
self.real_models = []
|
|
for app_label in real_apps:
|
|
app = global_apps.get_app_config(app_label)
|
|
for model in app.get_models():
|
|
self.real_models.append(ModelState.from_model(model, exclude_rels=True))
|
|
# Populate the app registry with a stub for each application.
|
|
app_labels = {model_state.app_label for model_state in models.values()}
|
|
app_configs = [AppConfigStub(label) for label in sorted(real_apps + list(app_labels))]
|
|
super(StateApps, self).__init__(app_configs)
|
|
|
|
self.render_multiple(list(models.values()) + self.real_models)
|
|
|
|
# If there are some lookups left, see if we can first resolve them
|
|
# ourselves - sometimes fields are added after class_prepared is sent
|
|
for lookup_model, operations in self._pending_lookups.items():
|
|
try:
|
|
model = self.get_model(lookup_model[0], lookup_model[1])
|
|
except LookupError:
|
|
app_label = "%s.%s" % (lookup_model[0], lookup_model[1])
|
|
if app_label == settings.AUTH_USER_MODEL and ignore_swappable:
|
|
continue
|
|
# Raise an error with a best-effort helpful message
|
|
# (only for the first issue). Error message should look like:
|
|
# "ValueError: Lookup failed for model referenced by
|
|
# field migrations.Book.author: migrations.Author"
|
|
msg = "Lookup failed for model referenced by field {field}: {model[0]}.{model[1]}"
|
|
raise ValueError(msg.format(field=operations[0][1], model=lookup_model))
|
|
else:
|
|
do_pending_lookups(model)
|
|
|
|
def render_multiple(self, model_states):
|
|
# We keep trying to render the models in a loop, ignoring invalid
|
|
# base errors, until the size of the unrendered models doesn't
|
|
# decrease by at least one, meaning there's a base dependency loop/
|
|
# missing base.
|
|
unrendered_models = model_states
|
|
while unrendered_models:
|
|
new_unrendered_models = []
|
|
for model in unrendered_models:
|
|
try:
|
|
model.render(self)
|
|
except InvalidBasesError:
|
|
new_unrendered_models.append(model)
|
|
if len(new_unrendered_models) == len(unrendered_models):
|
|
raise InvalidBasesError(
|
|
"Cannot resolve bases for %r\nThis can happen if you are inheriting models from an "
|
|
"app with migrations (e.g. contrib.auth)\n in an app with no migrations; see "
|
|
"https://docs.djangoproject.com/en/%s/topics/migrations/#dependencies "
|
|
"for more" % (new_unrendered_models, get_docs_version())
|
|
)
|
|
unrendered_models = new_unrendered_models
|
|
|
|
def clone(self):
|
|
"""
|
|
Return a clone of this registry, mainly used by the migration framework.
|
|
"""
|
|
clone = StateApps([], {})
|
|
clone.all_models = copy.deepcopy(self.all_models)
|
|
clone.app_configs = copy.deepcopy(self.app_configs)
|
|
# No need to actually clone them, they'll never change
|
|
clone.real_models = self.real_models
|
|
return clone
|
|
|
|
def register_model(self, app_label, model):
|
|
self.all_models[app_label][model._meta.model_name] = model
|
|
if app_label not in self.app_configs:
|
|
self.app_configs[app_label] = AppConfigStub(app_label)
|
|
self.app_configs[app_label].models = OrderedDict()
|
|
self.app_configs[app_label].models[model._meta.model_name] = model
|
|
self.clear_cache()
|
|
|
|
def unregister_model(self, app_label, model_name):
|
|
try:
|
|
del self.all_models[app_label][model_name]
|
|
del self.app_configs[app_label].models[model_name]
|
|
except KeyError:
|
|
pass
|
|
self.clear_cache()
|
|
|
|
|
|
class ModelState(object):
|
|
"""
|
|
Represents a Django Model. We don't use the actual Model class
|
|
as it's not designed to have its options changed - instead, we
|
|
mutate this one and then render it into a Model as required.
|
|
|
|
Note that while you are allowed to mutate .fields, you are not allowed
|
|
to mutate the Field instances inside there themselves - you must instead
|
|
assign new ones, as these are not detached during a clone.
|
|
"""
|
|
|
|
def __init__(self, app_label, name, fields, options=None, bases=None, managers=None):
|
|
self.app_label = app_label
|
|
self.name = force_text(name)
|
|
self.fields = fields
|
|
self.options = options or {}
|
|
self.bases = bases or (models.Model, )
|
|
self.managers = managers or []
|
|
# Sanity-check that fields is NOT a dict. It must be ordered.
|
|
if isinstance(self.fields, dict):
|
|
raise ValueError("ModelState.fields cannot be a dict - it must be a list of 2-tuples.")
|
|
# Sanity-check that fields are NOT already bound to a model.
|
|
for name, field in fields:
|
|
if hasattr(field, 'model'):
|
|
raise ValueError(
|
|
'ModelState.fields cannot be bound to a model - "%s" is.' % name
|
|
)
|
|
|
|
@cached_property
|
|
def name_lower(self):
|
|
return self.name.lower()
|
|
|
|
@classmethod
|
|
def from_model(cls, model, exclude_rels=False):
|
|
"""
|
|
Feed me a model, get a ModelState representing it out.
|
|
"""
|
|
# Deconstruct the fields
|
|
fields = []
|
|
for field in model._meta.local_fields:
|
|
if getattr(field, "rel", None) and exclude_rels:
|
|
continue
|
|
if isinstance(field, OrderWrt):
|
|
continue
|
|
name, path, args, kwargs = field.deconstruct()
|
|
field_class = import_string(path)
|
|
try:
|
|
fields.append((name, field_class(*args, **kwargs)))
|
|
except TypeError as e:
|
|
raise TypeError("Couldn't reconstruct field %s on %s.%s: %s" % (
|
|
name,
|
|
model._meta.app_label,
|
|
model._meta.object_name,
|
|
e,
|
|
))
|
|
if not exclude_rels:
|
|
for field in model._meta.local_many_to_many:
|
|
name, path, args, kwargs = field.deconstruct()
|
|
field_class = import_string(path)
|
|
try:
|
|
fields.append((name, field_class(*args, **kwargs)))
|
|
except TypeError as e:
|
|
raise TypeError("Couldn't reconstruct m2m field %s on %s: %s" % (
|
|
name,
|
|
model._meta.object_name,
|
|
e,
|
|
))
|
|
# Extract the options
|
|
options = {}
|
|
for name in DEFAULT_NAMES:
|
|
# Ignore some special options
|
|
if name in ["apps", "app_label"]:
|
|
continue
|
|
elif name in model._meta.original_attrs:
|
|
if name == "unique_together":
|
|
ut = model._meta.original_attrs["unique_together"]
|
|
options[name] = set(normalize_together(ut))
|
|
elif name == "index_together":
|
|
it = model._meta.original_attrs["index_together"]
|
|
options[name] = set(normalize_together(it))
|
|
else:
|
|
options[name] = model._meta.original_attrs[name]
|
|
# Force-convert all options to text_type (#23226)
|
|
options = cls.force_text_recursive(options)
|
|
# If we're ignoring relationships, remove all field-listing model
|
|
# options (that option basically just means "make a stub model")
|
|
if exclude_rels:
|
|
for key in ["unique_together", "index_together", "order_with_respect_to"]:
|
|
if key in options:
|
|
del options[key]
|
|
|
|
def flatten_bases(model):
|
|
bases = []
|
|
for base in model.__bases__:
|
|
if hasattr(base, "_meta") and base._meta.abstract:
|
|
bases.extend(flatten_bases(base))
|
|
else:
|
|
bases.append(base)
|
|
return bases
|
|
|
|
# We can't rely on __mro__ directly because we only want to flatten
|
|
# abstract models and not the whole tree. However by recursing on
|
|
# __bases__ we may end up with duplicates and ordering issues, we
|
|
# therefore discard any duplicates and reorder the bases according
|
|
# to their index in the MRO.
|
|
flattened_bases = sorted(set(flatten_bases(model)), key=lambda x: model.__mro__.index(x))
|
|
|
|
# Make our record
|
|
bases = tuple(
|
|
(
|
|
"%s.%s" % (base._meta.app_label, base._meta.model_name)
|
|
if hasattr(base, "_meta") else
|
|
base
|
|
)
|
|
for base in flattened_bases
|
|
)
|
|
# Ensure at least one base inherits from models.Model
|
|
if not any((isinstance(base, six.string_types) or issubclass(base, models.Model)) for base in bases):
|
|
bases = (models.Model,)
|
|
|
|
# Constructs all managers on the model
|
|
managers = {}
|
|
|
|
def reconstruct_manager(mgr):
|
|
as_manager, manager_path, qs_path, args, kwargs = mgr.deconstruct()
|
|
if as_manager:
|
|
qs_class = import_string(qs_path)
|
|
instance = qs_class.as_manager()
|
|
else:
|
|
manager_class = import_string(manager_path)
|
|
instance = manager_class(*args, **kwargs)
|
|
# We rely on the ordering of the creation_counter of the original
|
|
# instance
|
|
managers[mgr.name] = (mgr.creation_counter, instance)
|
|
|
|
if hasattr(model, "_default_manager"):
|
|
default_manager_name = model._default_manager.name
|
|
# Make sure the default manager is always the first
|
|
if model._default_manager.use_in_migrations:
|
|
reconstruct_manager(model._default_manager)
|
|
else:
|
|
# Force this manager to be the first and thus default
|
|
managers[default_manager_name] = (0, models.Manager())
|
|
# Sort all managers by their creation counter
|
|
for _, manager, _ in sorted(model._meta.managers):
|
|
if manager.name == "_base_manager" or not manager.use_in_migrations:
|
|
continue
|
|
reconstruct_manager(manager)
|
|
# Sort all managers by their creation counter but take only name and
|
|
# instance for further processing
|
|
managers = [
|
|
(name, instance) for name, (cc, instance) in
|
|
sorted(managers.items(), key=lambda v: v[1])
|
|
]
|
|
if managers == [(default_manager_name, models.Manager())]:
|
|
managers = []
|
|
else:
|
|
managers = []
|
|
|
|
# Construct the new ModelState
|
|
return cls(
|
|
model._meta.app_label,
|
|
model._meta.object_name,
|
|
fields,
|
|
options,
|
|
bases,
|
|
managers,
|
|
)
|
|
|
|
@classmethod
|
|
def force_text_recursive(cls, value):
|
|
if isinstance(value, six.string_types):
|
|
return smart_text(value)
|
|
elif isinstance(value, list):
|
|
return [cls.force_text_recursive(x) for x in value]
|
|
elif isinstance(value, tuple):
|
|
return tuple(cls.force_text_recursive(x) for x in value)
|
|
elif isinstance(value, set):
|
|
return set(cls.force_text_recursive(x) for x in value)
|
|
elif isinstance(value, dict):
|
|
return {
|
|
cls.force_text_recursive(k): cls.force_text_recursive(v)
|
|
for k, v in value.items()
|
|
}
|
|
return value
|
|
|
|
def construct_fields(self):
|
|
"Deep-clone the fields using deconstruction"
|
|
for name, field in self.fields:
|
|
_, path, args, kwargs = field.deconstruct()
|
|
field_class = import_string(path)
|
|
yield name, field_class(*args, **kwargs)
|
|
|
|
def construct_managers(self):
|
|
"Deep-clone the managers using deconstruction"
|
|
# Sort all managers by their creation counter
|
|
sorted_managers = sorted(self.managers, key=lambda v: v[1].creation_counter)
|
|
for mgr_name, manager in sorted_managers:
|
|
as_manager, manager_path, qs_path, args, kwargs = manager.deconstruct()
|
|
if as_manager:
|
|
qs_class = import_string(qs_path)
|
|
yield mgr_name, qs_class.as_manager()
|
|
else:
|
|
manager_class = import_string(manager_path)
|
|
yield mgr_name, manager_class(*args, **kwargs)
|
|
|
|
def clone(self):
|
|
"Returns an exact copy of this ModelState"
|
|
return self.__class__(
|
|
app_label=self.app_label,
|
|
name=self.name,
|
|
fields=list(self.construct_fields()),
|
|
options=dict(self.options),
|
|
bases=self.bases,
|
|
managers=list(self.construct_managers()),
|
|
)
|
|
|
|
def render(self, apps):
|
|
"Creates a Model object from our current state into the given apps"
|
|
# First, make a Meta object
|
|
meta_contents = {'app_label': self.app_label, "apps": apps}
|
|
meta_contents.update(self.options)
|
|
meta = type(str("Meta"), tuple(), meta_contents)
|
|
# Then, work out our bases
|
|
try:
|
|
bases = tuple(
|
|
(apps.get_model(base) if isinstance(base, six.string_types) else base)
|
|
for base in self.bases
|
|
)
|
|
except LookupError:
|
|
raise InvalidBasesError("Cannot resolve one or more bases from %r" % (self.bases,))
|
|
# Turn fields into a dict for the body, add other bits
|
|
body = dict(self.construct_fields())
|
|
body['Meta'] = meta
|
|
body['__module__'] = "__fake__"
|
|
|
|
# Restore managers
|
|
body.update(self.construct_managers())
|
|
|
|
# Then, make a Model object (apps.register_model is called in __new__)
|
|
return type(
|
|
str(self.name),
|
|
bases,
|
|
body,
|
|
)
|
|
|
|
def get_field_by_name(self, name):
|
|
for fname, field in self.fields:
|
|
if fname == name:
|
|
return field
|
|
raise ValueError("No field called %s on model %s" % (name, self.name))
|
|
|
|
def __repr__(self):
|
|
return "<ModelState: '%s.%s'>" % (self.app_label, self.name)
|
|
|
|
def __eq__(self, other):
|
|
return (
|
|
(self.app_label == other.app_label) and
|
|
(self.name == other.name) and
|
|
(len(self.fields) == len(other.fields)) and
|
|
all((k1 == k2 and (f1.deconstruct()[1:] == f2.deconstruct()[1:]))
|
|
for (k1, f1), (k2, f2) in zip(self.fields, other.fields)) and
|
|
(self.options == other.options) and
|
|
(self.bases == other.bases) and
|
|
(self.managers == other.managers)
|
|
)
|
|
|
|
def __ne__(self, other):
|
|
return not (self == other)
|